Physically constrained machine learning for non-linear spatio-temporal partial differential equations


Funded by EPSRC
Summary
This project was an EPSRC feasibility study, looking at applying probabilistic machine learning approaches to non-linear partial differential equations, particularly the Cahn-Hilliard model for polymer demixing. The work involved reviewing methods for physics-constrained learning, and developing a Bayesian optimisation framework to infer system parameters from differentiable simulation-based solvers.
    machine-learning
    bayesian-optimisation
    pdes